
sekun's blog posts tags search

Manage Secrets in NixOS
October 27, 2022 · 6 min · sekun | Suggest Changes

How to avoid hardcoding secrets in Nix

Table of Contents

Prerequisites

About agenix

Age files

Rules

Creating a secret

Updating a secret’s public keys

Reading secrets in Nix

Recently, I experimented with running NixOS on a DigitalOcean droplet (which I will

probably write about in the future), and migrated some of my toy projects from App

Platform. During the migration process, I realized that I would have to somehow

https://blog.sekun.dev/
https://blog.sekun.dev/posts/
https://blog.sekun.dev/tags/
https://blog.sekun.dev/archive/
https://github.com/sekunho/sekun.dev/tree/main/blog/content/posts/manage-secrets-in-nixos/index.md

handle the DB certificate, and other sensitive credentials. I can’t just hardcode

these!

One of the more popular projects for problems like this is agenix. Their README for

how to use it was a bit confusing (for me) so hopefully this post will be of use to

others.

There are two parts to this post: 1� creating secrets with agenix , and 2� reading

said secrets in a remote NixOS server. Of course you could use it for different things,

and my example isn’t exactly the simplest.

Note: I’m not saying this is the best way to do things. Please let me know if there

are any glaring issues you find!

Prerequisites

Here’s a checklist for what’s needed:

agenix CLI present in your computer

agenix ’s module to the system you want secrets to be read in

An SSH key pair present in the machine you’ll create the secrets in as well as in the

machine you want the secrets to be read in

Installing agenix is documented well in their README so feel free to consult it.

About agenix

Age files

Secrets are encrypted and stored by agenix in these things called age files. These

files have the .age format which is created by the agenix CLI. For you to create

an age file, the CLI looks for a secrets.nix file in the current directory for the rules

to determine who is allowed to decrypt it.

So, what are these rules?

https://github.com/ryantm/agenix

Rules

Let’s see what the agenix CLI says:

Specifically:

RULES environment variable with path to Nix file specifying recipient public keys.

Defaults to ‘./secrets.nix’

In the aforementioned file, we’re able to say whose key can decrypt what age file.

Let’s create this file first.

For the example later, I’ll need two files: one containing the DB CA certificate, and

the DB password. So I’ll create a rule for each age file I’m going to generate later on.

$ agenix

agenix - edit and rekey age secret files

agenix -e FILE [-i PRIVATE_KEY]

agenix -r [-i PRIVATE_KEY]

options:

-h, --help show help

-e, --edit FILE edits FILE using $EDITOR

-r, --rekey re-encrypts all secrets with specified recipients

-i, --identity identity to use when decrypting

-v, --verbose verbose output

FILE an age-encrypted file

PRIVATE_KEY a path to a private SSH key used to decrypt file

EDITOR environment variable of editor to use when editing FILE

RULES environment variable with path to Nix file specifying recipient public keys.

Defaults to './secrets.nix'

agenix version: 0.13.0

age binary path: /nix/store/kfasn0129ac0xn8wfvf7mq38rxhbc725-rage-0.8.1/bin/rage

age version: rage 0.8.1

We'll store the rules, and age files in the `secrets` folder

mkdir secrets

touch secrets.nix

Here’s how it looks like:

When decrypting/creating emojiedDBPassword.age for example, agenix looks for

the private key pair of the public key that was supplied. Otherwise, it prohibits the

user from doing so, and will complain about there not being any matching keys.

Note: You don’t need the rules file for decrypting an age file because the

permissions are already encoded in the age file. You should only have it present

if you’re using the CLI for creating/updating an age file.

Creating a secret

We’ll need the agenix CLI to create an age file containing our encrypted secret, and

run this:

This opens a text editor for you to put the secret in.

secrets/secrets.nix

let

 peepeepoopoo = "ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AAAAIB/Oxx/jZS7TRqjp2kwaYavzcxxKFT

in {

 "emojiedDBPassword.age".publicKeys = [peepeepoopoo];

 "emojiedDBCACert.age".publicKeys = [peepeepoopoo];

}

$ agenix -e emojiedDBCACert.age

Updating a secret’s public keys

If you need to add public keys for existing age files, update the secrets.nix file

accordingly, and run agenix -r . Make sure you’re in the same directory as the

secrets.nix , and age files.

It would show you something like this if it succeeds:

sekun@ichi /s/S/d/secrets (main)> agenix -r

rekeying emojiedDBCACert.age...

rekeying emojiedDBPassword.age...

Now our age files are ready to be used!

Reading secrets in Nix

I mentioned earlier that my use case is for supplying the DB CA certificate, and DB

password to the emojied app for it to connect with the DB properly. I won’t get into

the details of how I set up the server. Rather, I’ll just include the parts necessary. If

you wish to read the full config files, check the repo although peepeepoopoo here is

a throwaway server. Hence not in the repo.

What I need in the remote server called peepeepoopoo (where emojied is running)

are the ff:

agenix NixOS module

Age files

SSH key permitted to decrypt said age files

flake.nix :

{

 description = "Example";

 inputs = {

 nixpkgs.url = "github:NixOS/nixpkgs/nixos-22.05";

 emojiedpkg.url = "github:sekunho/emojied";

 agenix.url = "github:ryantm/agenix";

 };

 outputs = {

 self,

 nixpkgs,

 emojiedpkg,

 agenix

 }:

 let

 system = "x86_64-linux";

 pkgs = nixpkgs.legacyPackages.${system};

 emojied = emojiedpkg.packages.${system}.emojied;

 in {

 nixosConfigurations.peepeepoopoo = nixpkgs.lib.nixosSystem {

 inherit system;

https://emojied.net/
https://github.com/sekunho/dotfiles

All that’s left to do is specify where the age files are located, and referencing the

decrypted age files' paths.

hosts/peepeepoopoo/configuration.nix :

 modules = [

 emojiedpkg.nixosModule

 ./hosts/peepeepoopoo/configuration.nix

 agenix.nixosModules.age

];

 # Applies the configuration.nix function to these arguments

 specialArgs = {

 inherit pkgs;

 inherit emojied;

 };

 };

 };

}

{ modulesPath, lib, config, pkgs, ... }: {

 imports = lib.optional (builtins.pathExists ./do-userdata.nix) ./do-userdata.nix +

 (modulesPath + "/virtualisation/digital-ocean-config.nix")

];

 programs.ssh = {

 startAgent = true;

 extraConfig = ''

 AddKeysToAgent yes

 '';

 };

 nix = {

 package = pkgs.nixVersions.nix_2_9;

 extraOptions = ''

 experimental-features = nix-command flakes

 '';

 settings.trusted-public-keys = [

 "hydra.iohk.io:f/Ea+s+dFdN+3Y/G+FDgSq+a5NEWhJGzdjvKNGv0/EQ="

 "iohk.cachix.org-1:DpRUyj7h7V830dp/i6Nti+NEO2/nhblbov/8MW7Rqoo="

 "nix-community.cachix.org-1:mB9FSh9qf2dCimDSUo8Zy7bkq5CX+/rkCWyvRCYg3Fs="

];

 settings.substituters = [

 "https://cache.iog.io"

 "https://iohk.cachix.org"

 "https://nix-community.cachix.org"

];

 };

 age = {

 # We're letting `agenix` know where the locations of the age files will be

 # in the server.

 secrets = {

 emojiedDBPassword.file = "/root/secrets/emojiedDBPassword.age";

 emojiedDBCACert.file = "/root/secrets/emojiedDBCACert.age";

 };

 # Private key of the SSH key pair. This is the other pair of what was supplied

 # in `secrets.nix`.

 #

 # This tells `agenix` where to look for the private key.

 identityPaths = ["/root/.ssh/id_ed25519"];

 };

 # List services that you want to enable:

 services = {

 emojied = {

 enable = true;

 port = "3000";

 dbHost = "<REPLACE_WITH_YOUR_OWN>";

 dbName = "<REPLACE_WITH_YOUR_OWN>";

 dbPort = "<REPLACE_WITH_YOUR_OWN>";

 dbUser = "<REPLACE_WITH_YOUR_OWN>";

 dbPoolSize = "5";

 dbPasswordFile = config.age.secrets.emojiedDBPassword.path;

 dbCACertFile = config.age.secrets.emojiedDBCACert.path;

 };

 openssh = {

 enable = true;

 permitRootLogin = "prohibit-password";

 passwordAuthentication = false;

 };

 };

 networking = {

 firewall = {

 enable = true;

 allowedTCPPorts = [22 3000];

 };

 };

 # List packages installed in system profile. To search, run:

 # $ nix search wget

Now we can move the secrets folder, and the SSH key (if it ’s not already there)

from our host machine to the remote server.

Then hit build and apply the config:

Which gives me this beautiful creation:

The abomination now works!

 environment = {

 systemPackages = with pkgs; [];

 loginShellInit = ''

 export SSH_AUTH_SOCK="$XDG_RUNTIME_DIR/ssh-agent.socket"

 '';

 };

 system.stateVersion = "22.05";

}

$ scp secrets root@<SERVER_IP>:/root/

$ scp ~/.ssh/<YOUR_KEY> root@<SERVER_IP>:/root/.ssh/id_ed25519

$ scp ~/.ssh/<YOUR_KEY>.pub root@<SERVER_IP>:/root/.ssh/id_ed25519.pub

$ nixos-rebuild switch \

 --flake .#peepeepoopoo \

 --target-host root@<SERVER_IP> \

 --build-host localhost

copying 3 paths...

copying path '/nix/store/lali119kww58c4df3b1w61yzg5an1mr7-system-units' to 'ssh://ro

copying path '/nix/store/g1izspgbn34hmlll2hby5qapx90nm43p-etc' to 'ssh://root@<SERVE

copying path '/nix/store/739zphavd4d1vjfnd8v2b1bpm0dzwxz6-nixos-system-unnamed-22.05

updating GRUB 2 menu...

stopping the following units: emojied.service

activating the configuration...

[agenix] creating new generation in /run/agenix.d/1

[agenix] decrypting secrets...

decrypting '/root/secrets/emojiedDBCACert.age' to '/run/agenix.d/1/emojiedDBCACert'.

decrypting '/root/secrets/emojiedDBPassword.age' to '/run/agenix.d/1/emojiedDBPasswo

[agenix] symlinking new secrets to /run/agenix (generation 1)...

[agenix] chowning...

setting up /etc...

reloading user units for root...

setting up tmpfiles

starting the following units: emojied.service

the following new units were started: run-agenix.d.mount

© 2022 sekun's blog Powered by Hugo & PaperMod

nix flakes

https://blog.sekun.dev/
https://gohugo.io/
https://git.io/hugopapermod
https://blog.sekun.dev/tags/nix/
https://blog.sekun.dev/tags/flakes/

